- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Singh, Siddhant (2)
-
Abowd, Gregory D (1)
-
Craig, Steven R (1)
-
Das, Sauvik (1)
-
Do, Youngwook (1)
-
Goldsmith, Bryan R. (1)
-
Herrera, Dylan (1)
-
Huan, Xun (1)
-
Kwabi, David G. (1)
-
Li, Zhouyu (1)
-
Modak, Sanat Vibhas (1)
-
Oudeif, Fairooz (1)
-
Shen, Wanggang (1)
-
Shi, Chengzhi (1)
-
Starner, Thad (1)
-
Welch, Phoebe J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Organic redox-active molecules are attractive as redox-flow battery (RFB) reactants because of their low anticipated costs and widely tunable properties. Unfortunately, many lab-scale flow cells experience rapid material degradation (from chemical and electrochemical decay mechanisms) and capacity fade during cycling (>0.1%/day) hindering their commercial deployment. In this work, we combine ultraviolet-visible spectrophotometry and statistical inference techniques to elucidate the Michael attack decay mechanism for 4,5-dihydroxy-1,3-benzenedisulfonic acid (BQDS), a once-promising positive electrolyte reactant for aqueous organic redox-flow batteries. We use Bayesian inference and multivariate curve resolution on the spectroscopic data to derive uncertainty-quantified reaction orders and rates for Michael attack, estimate the spectra of intermediate species and establish a quantitative connection between molecular decay and capacity fade. Our work illustrates the promise of using statistical inference to elucidate chemical and electrochemical mechanisms of capacity fade in organic redox-flow battery together with uncertainty quantification, in flow cell-based electrochemical systems.more » « less
-
Do, Youngwook; Singh, Siddhant; Li, Zhouyu; Craig, Steven R; Welch, Phoebe J; Shi, Chengzhi; Starner, Thad; Abowd, Gregory D; Das, Sauvik (, Proceedings of the 34th ACM User Interface Software and Technology Symposium (UIST))null (Ed.)Bluetooth requires device pairing to ensure security in data transmission, encumbering a number of ad-hoc, transactional interactions that require both ease-of-use and "good enough" security: e.g., sharing contact information or secure links to people nearby. We introduce Bit Whisperer, an ad-hoc short-range wireless communication system that enables "walk up and share'" data transmissions with "good enough" security. Bit Whisperer transmits data to proximate devices co-located on a solid surface through high frequency, inaudible acoustic signals. The physical surface has two benefits: it limits communication range since sound travels more robustly on a flat solid surface than air; and, it makes the domain of communication visible, helping users identify exactly with whom they are sharing data without prior pairing. Through a series of technical evaluations, we demonstrate that Bit Whisperer is robust for common use-cases and secure against likely threats. We also implement three example applications to demonstrate the utility of Whisperer: 1-to-1 local contact sharing, 1-to-N private link sharing to open a secure group chat, and 1-to-N local device authentication.more » « less
An official website of the United States government
